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It is shown that the nonrotating Coordinates wherein the energy-momentum is 
globally conserved share the experimental features of the inertial frames. The 
falling of matter in a spherically symmetric gravitational field is studied in the 
light of the energy-momentum conservation valid in these coordinates. 

1. INTRODUCTION 

The difficulties of a theory of gravitation may be traced to the reduced 
body of experimental data at our disposition. The motion of planets and 
light rays in the spherically symmetric gravitational fields of astronomical 
bodies and the falling of bodies toward the earth are the only physical 
phenomena that open a very narrow window to gravitation. The weakness 
of the gravitational field prevents experimentation with artificially created 
fields. Would it have been possible to elaborate Maxwell's theory by experi- 
menting only in the Coulomb field of spherical conductors? 

Extremely limited in our experimental possibilities, we have to act as 
the paleontologist who rebuilds the whole body of an antediluvian animal 
from a bone fragment. In this situation we cannot disregard even one of 
the experimental facts that nature grants us. Among them, there are the 
experimental facts that reveal the existence of a preferred class of coordi- 
nates: the inertial frames of Newton's mechanics (NM) and special relativity 
(SR), wherein stars, pendulums, and water buckets show special behavior. 

According to Mach's and Einstein's philosophy, the existence of a pre- 
ferred class of frames results from the energy-momentum distribution 
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throughout spacetime. Intrinsically all the frames are equivalent, but not all 
of them are equally related to the matter actually existing in the universe. 
NM and SR admit a preferred realization of their respective invariance 
group, but lacking any bearing on the energy-momentum distribution, they 
are unable to provide a theoretical way for its differentiation. The existence 
of a preferred class of frames is therefore in the pre-general relativistic theor- 
ies a well-founded experimental fact that lacks a theoretical explanation. On 
the other hand, general relativity (GR) is essentially related to the energy- 
momentum distribution, but due to the absence of global "inertial" frames, 
the Mach principle remains in GR a philosophical idea deprived of physical 
content. 

The energy-momentum tensor is assumed in GR to be only locally 
conserved in the geodesic systems of coordinates. In an attempt to restore 
the global characteristic of energy-momentum conservation, Einstein and 
his continuators looked for a kind of energy excluded from the nonconserved 
tensor. This external kind of energy-momentum is intended to complement 
the energy-momentum tensor to a quantity with globally vanishing ordinary 
divergence. 

This global energy-momentum conservation is required to hold in all 
systems of coordinates. For mathematical reasons a symmetric tensor is 
precluded from satisfying a global ordinary divergencelessness condition 
valid in all coordinate systems. Hence, the reluctance to accept a physical 
law valid in a preferred system of coordinates leads paradoxically to 
acquiescence with a nontensorial gravitational energy-momentum whose 
dependence on the coordinates annuls any apparent gain in covariance. 

In previous papers (Nissani and Leibowitz, 1988, 1989a,b, 1990, 1991; 
Carmeli et al., 1990) we have shown the existence of preferred frames, the 
nonrotating systems of coordinates, wherein the energy-momentum is glob- 
ally conserved, and the stars, neglecting gravitational effects, move with 
constant velocity (two of the principal characteristics of the inertial frames). 
These coordinate systems have been the object of some (unpublished) criti- 
cism. In the interior of a rotating galaxy, it was said, the nonrotating coordi- 
nates have to rotate together with any one .of the stars to provide for the 
energy-momentum conservation. Certainly, this is so if the gravitational 
energy-momentum is excluded from the conserved energy-momentum 
tensor. But one of the consequences of the existence of the nonrotating 
frames is precisely that gravitational energy may, and must, be incorporated, 
together with all the other members of the family, in the energy-momentum 
tensor. For this purpose a tensorial expression for the gravitational energy- 
momentum is needed. Such tensorial expression was proposed in Nissani 
and Leibowitz (1991). 

A suitable gravitational energy-momentum tensor has to allow for the 
existence of physically acceptable preferred frames. Namely, the nonrotating 
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frames have to be specializable to share the experimental characteristics of 
the inertial frames. To show that the proposed tensorial expression of the 
gravitational energy-momentum tensor satisfies this claim is the main pur- 
pose of the present work. 

In the next section we describe and classify the experimental character- 
istics of the inertial frames. In Sections 3 and 4 the nonrotating coordinates 
are examined in the light of the above experimental characteristics of the 
inertial frames. In Section 5 the repercussion of the definition of gravitational 
energy-momentum on the adaptability of the nonrotating coordinates to the 
static character of the spacetime is discussed. 

In Section 6 some of the experimental requirements to be satisfied for 
the gravitational energy are specified. In Section 7 the gravitational energy- 
momentum tensor is briefly described. In Section 8 we discuss the splitting 
in curved spacetime of the spatial integral of the energy into three values of 
physical significance. In Section 9 these three values of the integral of the 
gravitational energy in the surroundings of a star are calculated in static 
nonrotating coordinates, and are shown to satisfy the integral requirements 
pointed out in Section 6. 

In Section 10 we discuss two different ways of measuring energy- 
momentum. The ensuing physical quantities will be respectively called the 
local and the universal energy-momentum. With the local energy-momentum 
the rest mass of a particle is an invariant of the motion. With the universal 
definition, on the contrary, it undergoes a gravitational red shift. In Section 
11 the falling of test matter in a spherically symmetric gravitational field is 
studied by balancing gravitational against kinetic energy. It is shown t h a t  
using the universal definition for the energy-momentum tensor yields results 
in total accordance with experience. Finally, Section 12 is devoted to remarks 
and conclusions. 

2. THE EXPERIMENTAL FACTS 

NM and SR accept the existence of a preferred realization of their 
respective invariance group---the inertial frames. Its existence is supported 
by an abundance of terrestrial experiments and astronomical observations. 
As experimental facts they have to be taken into account by any physical 
theory concerned with coordinate systems. We will classify them, for the 
convenience of the ensuing discussion, into the following six sets. 

EF1. The local experiments that do not involve gravitation. They are 
satisfactorily explained by SR, and also by GR by means of the locally 
geodesic coordinates. In spite of their local character, they point to the same 
frames where distant celestial bodies show special behavior. 

EF2. The local experiments that do involve gravitation, e.g., Newton's 
water bucket or Foucault's pendulum. They cannot be explained by means 
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of the geodesic coordinates, since in the absence of gravitation a pendulum 
is not expected to oscillate and the water will hardly enter the bucket. They 
also point to the frames wherein stars and galaxies are in constant-velocity 
motion. Their explanation demands the existence of nongeodesic preferred 
frames. 

EF3. The nonlocal observed facts such as the behavior of stars and 
galaxies. In an inertial frame, and when gravitational effects can be neglected, 
they are at rest or in motion at constant velocity. On the other hand, in a 
"rotating" frame they perform an ordered simultaneous rotation. Observed 
from the earth, they describe elliptic paths synchronized with the rotation 
of the earth around the sun. Confined to only local preferred coordinates, we 
have no means to account for these facts that embrace the whole observable 
universe. 

EF4. Experiments that show the physical character of the preferred 
frames. The constancy of spectral shifts and measured angles indicates that 
the uniform velocity exhibited by the stars in these coordinates is a physical 
fact rather than a coordinate effect. The preferred frames appear as phys- 
ically measurable coordinates that cannot be considered as mere labels. 

The possibility of establishing the preferred coordinates by measure- 
ment requires a time-independent metric. The possibility of the existence of 
such a metric relies on the characteristics of the energy-momentum distribu- 
tion. The slow velocities of stars and galaxies with respect to their neighbors 
characterize our universe as a quasistatic one. This allows the existence 
of coordinates with a nearly time-independent metric and orthogonal time 
coordinate. All this is specially true when dealing with the idealized config- 
uration of an isolated body. Hence, according to the experimental results, the 
preferred coordinates are adaptable to the static characteristics of spacetime. 

EF5. The mass of local experiments and astronomical observations that 
support the energy-momentum conservation as holding true in the same 
frames wherein the special behavior of pendulums, water buckets and stars 
takes place. The uniform velocity of stars and galaxies is by itself a manifesta- 
tion of this conservation law. 

When gravitational effects are not negligible, the energy-momentum 
conservation demands a suitable definition of gravitational energy. All the 
attempts to extend the energy-momentum conservation to a law valid in all 
coordinate systems have failed with regard to the physical nature of the 
ensuing gravitational energy. 

EF6. The Lorentz invariance of the Maxwell equations that implies the 
Lorentz group as a link between the preferred frames. 

In the next section we define a class of general relativistic preferred 
frames. We do this by means of a variational demand on the components 
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of the energy-momentum tensor. These preferred frames will be shown to 
be compatible with the above six sets of experimental facts. 

3. VARIATIONAL VERSION OF THE MACH PRINCIPLE 

In pursuit of a class of coordinate systems linked to the energy-momen- 
tum distribution, one is led to resort to a noncovariant requirement associ- 
ated with the energy-momentum tensor. Accordingly, we will look for the 
coordinate systems wherein the integrals of the components of the energy- 
momentum tensor density over an arbitrary four-dimensional volume of 
spacetime attain a stationary value. 

To this purpose we define the following ten scalar actions as functionals 
of the energy-momentum tensor components and four scalar functions 
~b (') of  the coordinates: 

I(U)(v) = f v ( -g)  ' /2T'~# ~b'~ ) dP'<9") d4 x (1) 

By varying the functions ~b <') and requiring stationariness, one finds the 
following four Lagrange equations: 

((-g)'/2T"'),oO<~v~+ (-g)'/2T~'~<:~ = 0 (2)  

for the four functions ~b <u). Hence, equation (2) defines the class of coordi- 
nates wherein the integrals of the components of the energy-momentum 
tensor through an arbitrary four-dimensional volume attain a stationary 
value. Notice that for an antisymmetric tensor, T ~' = - T "~, equation (2) is 
satisfied for any arbitrary function ~b <u~ provided that 

T~f =0  

and for none otherwise. If  the metric substitutes for the energy-momentum 
tensor, equation (2) will define the harmonic coordinates (Fock, 1964). 

In the particular case of isolated massive points, such as stars or galaxies 
at great distances from each other, and neglecting any gravitational contribu- 
tion, the energy-momentum tensor may be written 

1 
T:" = • H 6[x j - xJ(x~ U'/(x ~ U~(x ~ (3) 

�9 ( _ g ) l / 2  J i 

where i runs over stars, j over the three spatial coordinates, x ~ is the time 
coordinate, Mi are the time components of a covariant vector that in the 
Schwarzschild coordinates of the respective star take the values of the 
Schwarzschild stellar masses, and Ui are the stellar four-vector velocities. 
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Using (3) in (2) and putting 

v~ 

where V stands for the velocities of the stars in the selected coordinate 
systems that satisfy equation (2), and accepting the conservation of the stars' 
masses expressed by 

: o  

one finds 

dr'7 /dx~ (5) 

Therefore, equation (2) defines, in strict general relativistic terms, the coordi- 
nate systems where the distant stars are at rest or in constant-velocity 
motion. These coordinates have been named the nonrotating coordinates 
since they share with Newton's fixed-stars frames, selected by Newton's 
water bucket, the most conspicuous characteristics. 

Furthermore, denoting by g' and T' the values of the metric and energy- 
momentum tensors in the nonrotating coordinates, equation (2) becomes 

( ( - g ' )  I /2T'a~) ,a  = O (6) 

Namely, in the nonrotating coordinates the energy-momentum tensor 
density satisfies a global continuity equation. They satisfy, therefore, the 
experimental facts EF3 and EF5 of the preceding section that distinguish 
the inertial frames. Notice that if the energy-momentum tensor is replaced 
by the metric, equation (6) becomes the deDonder condition of the harmonic 
coordinates. 

In the next section it will be shown that the nonrotating coordinates 
can be specialized to be locally geodesic with respect to any given observer. 
It is precisely the existence of both geodesic and nongeodesic nonrotating 
coordinates that makes it possible, at least in principle, to explain the sets 
EF1 and EF2 of local experimental facts. 

4. THE LOCAL EXPERIMENTAL FACTS 

So far, we have not made use of the covariant divergencelessness of the 
energy-momentum tensor. We now have to resort to it to include in the same 
preferred coordinate systems, together with the global energy-momentum 
conservation and the special behavior of the distant stars (EF3 and EF5), 
the local special relativistic form of the laws of physics (EF1). For it to be 
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possible to do this, the nonrotating coordinates have to include locally geo- 
desic coordinates with respect to any given observer. 

Note that in locally geodesic coordinates, equation (6) is equivalent to 
a covariant divergencelessness condition: 

T';~P=0 (7) 

Therefore, the covariant conservation of the energy-momentum tensor is 
a necessary condition for the nonrotating coordinates to include geodesic 
coordinates with respect to any given observer. That this condition is also 
sufficient was illustrated in detail in Nissani and Leibowitz (1989). Namely, 
for any given observer there is a subclass of the geodesic coordinates wherein 
the energy-momentum tensor is globally conserved and the stars move with 
constant velocity. It is in these frames that the local experimental facts EF1, 
EF3, and EF5 find their explanation. They will be referred to as the geodesic 
nonrotating coordinates. 

It is easy to see from equation (2) that the internal group of the non- 
rotating coordinates is defined by 

TatJ ~, (v) ~,,a~=0 (8) 

It is a broad subgroup of the general mapping group that includes the 
Lorentz group. The nonrotating coordinates defined by equation (2) consti- 
tute its preferred representation. 

The internal group of the geodesic nonrotating frames of a given 
observer is the subgroup of the group (8) made up by the transformations 
that are locally Lorentzian. This is in agreement with the fundamental role 
of the Lorentz transformation in the local experimental facts (EF6). On the 
other hand, the nonlocally Lorentzian transformations of the group link 
geodesic to nongeodesic nonrotating coordinates. The existence of the non- 
geodesic nonrotating coordinates, i.e., preferred frames where gravitational 
effects are present, makes possible the explanation of the experimental facts 
that involve gravitation (EF2). 

5. STATIC NONROTATING COORDINATES 

As was indicated in Section 2, there is strong experimental evidence of 
the (nearly) static characteristic of the inertial frames (EF4). It is therefore 
natural to demand the existence of nonrotating coordinates that share this 
characteristic when one deals with static configurations. Obviously, in a 
totally static universe one has to expect static solution of equation (2). But, 
clearly, we are not interested in the physics of a dead universe with an energy- 
momentum tensor totally independent of time. The question arises of the 
extent to which the nonrotating coordinates may continue to be assumed 
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static for the study of the dynamics of test bodies in a static gravitational 
field. The answer seems to be that it rests on the appropriate definition of 
the gravitational energy-momentum. 

To clarify the effect of the definition of gravitational energy-momentum 
on the physical properties of the nonrotating frames, consider the extreme 
case of a gravitational energy-momentum which is by definition everywhere 
null; or, what is for this case the same, a gravitational energy-momentum 
external to the energy-momentum tensor. Now, assume an isolated test body 
in an arbitrary gravitational field. The energy-momentum tensor in the vicin- 
ity of the test body would be, in this case, of the form described by equation 
(3). Hence, if the conservation of the scalar rest mass of the body is assumed, 
equation (5) holds true. Therefore, the test body would be at rest or with 
constant velocity with respect to the nonrotating coordinates. Namely, the 
nonrotating coordinates would escort any body in its motion. They by no 
means would exhibit the physical characteristic~ of the inertial frames. 

Only a suitable expression for the gravitational energy-momentum as 
an integral part of the conserved energy-momentum tensor can lead to phys- 
ically acceptable nonrotating coordinates. In the following, a tensorial 
expression for the gravitational energy-momentum compatible with the exist- 
ence of static nonrotating coordinates will be considered. 

6. G L O B A L  ENERGY-MOMENTUM CONSERVATION AND 
GRAVITATIONAL ENERGY 

As pointed out in the Introduction, in the conventional general relativis- 
tic approach the energy-momentum tensor is conserved only locally in the 
geodesic systems of coordinates. It is only in these locally preferred systems 
of coordinates that the covariant divergencelessness of the energy-momen- 
tum tensor reads as an ordinary divergencelessness, i.e., as a continuity 
equation. This lack of global conservation led to the search for a kind of 
energy external to the energy-momentum tensor which is assumed to be of 
gravitational nature. This external kind of energy is intended to complement 
the energy-momentum tensor, yielding a globally conserved quantity. Hence, 
the energy-momentum tensor is understood to be built up of only "matter" 
energy. 

The resulting globally conserved quantity, the sum of matter and gravi- 
tational energy-momentum, is, in the conventional approach, required to 
satisfy a continuity equation in all systems of coordinates. For mathematical 
reasons a symmetric tensor cannot satisfy this requirement. It is necessary, 
therefore, to give up the symmetry or the tensorial nature of the conserved 
quantity. Either of these renunciations demands a very high price, in philo- 
sophical as well as in practical currency, in terms of our understanding 
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of physics. The symmetry of the conserved energy-momentum quantity is 
necessary for the conservation of the angular momentum, whereas relin- 
quishing the tensorial character (the generally favored way) results in an 
anomalous nonlocalized kind of energy. 

The existence of the nonrotating frames whereby the energy-momentum 
tensor satisfies a global continuity equation precludes the interchange 
between a kind of energy included in the tensor and another kind of energy 
excluded from it. [For the interested reader this was illustrated by means of 
a thought experiment in Nissani and Leibowitz (1988).] Hence, there is no 
place, and also no more need, for a kind of energy excluded from the energy- 
momentum tensor. The gravitational energy should therefore be tensorial 
and included, together with all the other manifestations of the energy, in the 
energy-momentum tensor. Accordingly, the Einstein field equation 

G a~ = tcT~ ~ (9) 

now has to be interpreted with 

= + ( l O )  

where TM and To are the matter and the gravitational energy-momentum 
tensors, respectively. 

The goal is now to find the appropriate expression for the gravitational 
energy-momentum tensor To. Clearly, the final test to establish the appropri- 
ateness of the expression is whether it fits the experimental facts. In practice, 
the experimental facts involving gravitational energy are limited to the move- 
ment of bodies in astronomical gravitational fields. In a conservative system, 
such as the inertial frames in NM or the nonrotating coordinates in GR, the 
change in "matter" energy-momentum of a falling body should be equal 
and of opposite sign to the change in the gravitational energy-momentum 
of the field. 

Calculated by balancing gravitational and kinetic energy, the Newton- 
ian gravitational energy in the surroundings of a star is given by 

EN=- �89 (11) 

where M and R are the star mass and radius, respectively. Consequently, 
for an ordinary star we should expect a relativistic value highly approximated 
to the Newtonian value when calculated in a nonrotating system of coordi- 
nates with respect to which the star is at rest. Therefore, we have to demand 
from the suitable expression of the gravitational energy T~ ~ that 

E~ T ~ dr~-  �89 (12) 
>>2M 
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while for a black hole, with escape velocity equal to the velocity of light, we 
should have 

E~ T ~ d r = -  oo (13) 
R=2M 

and for the velocity of a body falling from infinity we should attain, when 
calculated by balancing gravitational and kinetic energy, a highly approxi- 
mated value to the geodesic path velocity oe, 

v~ = 2 j /2MG/r  (14) 

which is also the expression of the corresponding Newtonian velocity if i" is 
identified with the Newtonian distance. 

In this approach the gravitational energy-momentum is part of the 
conserved tensor that determines the nonrotating coordinates. Hence, the 
definition of Tc affects the determination of the preferred systems of coordi- 
nates. We should therefore demand that the definition of gravitational 
energy-momentum lead to physically acceptable nonrotating coordinates. 
According to the set EF4 of experimental facts and what was said in the 
preceding section, in a static spacetime the nonrotating frames should include 
static coordinates, i.e., frames with a time-independent metric and an ortho- 
gonal time coordinate, 

c~g~a/~gx~ g~ (15) 

In the next section we will show the existence of a tensor that fulfills 
equations (12) and (13), with the integrals carried out in a coordinate system 
wherein the metric satisfies equation (15). In Section 11 the free falling of 
matter is satisfactorily studied by means of this tensor in the light of the 
energy-momentum conservation. It appears therefore as a suitable tensorial 
expression for the gravitational energy-momentum. 

7. THE GRAVITATIONAL ENERGY-MOMENTUM TENSOR 

With the aid of an orthonormal tetrad ~b~ 

~b~ r/,o~b~ =g~/3 (16) 

where 7/ab is the Minkowskian matrix, the Ricci tensor may be written 

R~r = ( P ~ ; r -  P~r;~) + (P~rP$~ - P ~ P ~ r )  (17) 
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with the tensor P defined by 

~ r  = 4'~ 4'~ ;~ (18) 

Equation (17) shows the decomposition of the Ricci tensor into two 
tensors that are the covariant rotor and the commutator of the tensor P. 

This decomposition of the Rieei tensor induces, in turn, a decomposition 
of the Einstein tensor, 

1 p 
Go,~a = R6(,~t~) - ~g , ,pR  a. (19) 

1 p 
GMaa = RM(~t~) --  ~ g ~ o R  Mr, (20) 

with 

Now, we assume 

and 

(21) 

RM#~. -- a 6 a 6 -- (Ps i ,  P#~, - Pa,~Por) (22) 

T f f S =  ( 1 / ~ c ) c G  ~p (23) 

as the definition of the gravitational energy-momentum tensor. This assump- 
tion, which may seem here somewhat arbitrary, will be justified later by 
showing that it satisfies the experimental demands described in the previous 
section [equations (12) to (15)]. 

Now, from equations (9), (10), and (23) one obtains 

G~t p = tcT~ (24) 

Equations (23) and (24) are therefore the tetrad form of the Einstein field 
equation. Regarding the gravitational and matter energy-momentum as 
data, and taking into account the Bianchi identities, they constitute a set of 
16 independent equations for the 16 components of the tetrad. 

It has to be pointed out that for a given metric there are infinite different 
possible partitions of the total energy-momentum into its matter and gravita- 
tional parts. This partition is invariant under a global Lorentz transforma- 
tion of  the tetrad, but it varies under a local Lorentz transformation. This 
is because the gravitational energy-momentum is not a function of the metric, 
which is Lorentz invariant, but of the orthonormal tetrad field. Therefore, 
this tetrad, and not the metric, has to be regarded as the fundamental element 
of the gravitational field. It will be called the fundamental tetrad. 

Nevertheless, we assume the existence of a specific amount of gravita- 
tional energy-momentum associated with the curvature of spacetime. It will 
be called the "gravitational energy-momentum of curvature" to distinguish 
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it from other possible manifestations of gravitational energy-momentum, 
e.g., gravitational waves. To this category, gravitational energy of curvature, 
belongs the gravitational energy in the neighborhood of a star calculated by 
equation (12). 

This implies that we have to find a way to single out the tetrad field 
associated with the energy of curvature. We do this in Section 9 for the 
gravitational field of a spherically symmetric source. But first we clarify some 
concepts that we will need later. 

8. THE INTEGRAL ENERGY 

There are three different integrals of the energy contained in a given 
spatial volume V that we will need to consider in the following sections. In 
all the cases they are understood to be carried out in nonrotating coordinates. 

The first integral, the conserved energy E ~ is the time component of an 
affine contravariant vector, 

E~ = ~v (-g) l /2T~176 d3 x (25) 

Its physical significance arises from being, in the nonrotating coordinates 
and when T is the total energy-momentum tensor, a conserved quantity. It 
will be called the "conserved energy" even when T is a partial energy- 
momentum tensor, since it expresses a contribution to a conserved quantity. 

The second integral is the scalar integral energy E, 

f (--g)l/2~aT~~ d3x (26) E= 
d V 

where �9 is a unitary time vector. For a static environment, taking the vector 
tl) normal to the hypersurface defined by the spatial static coordinates, E is 
a well-defined scalar parameter of the system. 

Finally, the third integral is the time component of an affine covariant 
vector, 

f (-g)'/2T~ d3x (27) Eo= 
d V 

Its importance arises from being, when the integral is carried out in static 
coordinates, the mass parameter M of the Schwarzschild solution. Notice 
that the three integrals (25)-(27) are invariant, except for a trivial change 
of scale, under transformations among static coordinates. 



Experimental Facts and Gravitational Energy in GR 2077 

9. GRAVITATIONAL ENERGY IN T H E  SURROUNDINGS 
OF A STAR 

Now, that we are equipped with the necessary tools, let us attempt to 
evaluate the amount of  gravitational energy of  curvature in the particular 
case of a spherically symmetric source of  radius R and Schwarzschild 
mass M, 

M = 47r T~ dr (28) 

with vanishing total energy-momentum outside the source, i.e., T r  = 
TM + Ta = 0 for r > R. This last requirement is simply a mathematical idealiz- 
ation of  the physical situation intended to take advantage of  the Scbwarz- 
schild solution 

g~a = diag[ 1/A, - A ,  - - r  -2, - - r  -2  s in  -2  0] ,  A = 1 - 2 M G / r  (29) 

Notice that the integral (28), which is of  the same kind as integral (27), is 
the usual expression of  the Schwarzschild mass (Landau and Lifshitz, 1975), 
but with the total energy-momentum tensor, including gravitational contri- 
bution, as integrand. 

It may be convenient to consider the possible presence of  distant stars 
at rest. Their presence will illustrate the concept of  nonrotating coordinates. 
They are assumed to be sufficiently distant to allow the use of the Schwarz- 
schild solution in the neighborhood of  the source. 

Up to now we have only the 10 equations (16) that relate the 16 compo- 
nents of  the tetrad with the metric (29). They have an infinite set of  solutions, 
which account for all the possible values TM = - Ta,  namely, TT = O. How- 
ever, we have assumed the existence of  a specific form of  gravitational 
energy-momentum associated with the curvature of  spacetime, which is 
expected to be uniquely determined by the metric. It was shown in Nissani 
and Leibowitz (1991) that in this particular case the following tetrad is 
singled out by symmetry considerations: 

~bg = (A-'/2, 0, 0, 0) 

~7 = (0, A I/2 sin O cos ~b, r -I cos 0 cos t#, - r  -1 sin- '  0 sin $ ) 

d?~ = (0, A 1/2 sin 0 sin ~b, r -l  cos 0 sin ~b, - r  -t sin -1 0 cos ~b ) 

~b~ = (0, A I/2 cos 0, - r  -l  sin 0, 0) 

(30) 
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This can be justified by the following reasons: 
(a) In flat spacetime, with M =  0, equations (30) give, up to a physically 

inconsequential global Lorentz transformation, the general expression of a 
parallel orthonormal tetrad field, i.e., with vanishing covariant derivatives, 
~b~;a =0. However, with M >  0 the tetrad deviates with parallelism due to 
the curvature of spacetime. 

(b) Using equation (30) in  the definition (23) of the gravitational 
energy-momentum tensor, its ensuing nonvanishing components are 

r o  = _ 1  (I - A'/')'r - '  
Ir 

T ~ ,  = - I [ (  1 - A ' / 2 ) 2 r  - 2  + ( 1 - A - ' / 2 )  �9 2MG/r 3] 
/r 

2 3 _ 1 To2 = T m -  - - -  (1 -A-1/2)MG/r 3 
1r 

(31) 

All of them, as should be expected, vanish in flat spacetime (M = 0). The 
resulting nonvanishing value of the gravitational energy-momentum in 
curved spacetime (M>0)  may therefore be traced to the deviation of the 
tetrad from parallelism due to curvature. 

(c) The resulting gravitational energy-momentum, which is diagonal 
and with T 22 = T 33 in the Schwarzschild coordinates, fits in the symmetry of 
the curvature. It shows two preferred directions, temporal and radial, and 
one preferred plane, normal to the radius. In addition it vanishes for r = oo, 
as expected in an asymptotically fiat spacetime. 

As was indicated in the last section, the integrals (25)-(27) are invariant 
under transformations between static coordinates. Hence, assuming the 
existence of static nonrotating coordinates, they may be performed in 
Schwarzschild coordinates. Taking the expression (31) of the gravitational 
energy-momentum of curvature and performing the integrals from the sur- 
face of the source to infinity, one obtains 

2f2 4 l - f 2  ) 
E ~  In l+ f2  2 ( l + f l ) '  f2=(1-2MG/R) ' /2  (32) 

for the conserved gravitational energy, whereas the amount of scalar gravita- 
tional energy is given by 

Eo = - M 1 - f2 (33) 
l+f~  
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and the contr ibut ion o f  the external gravitat ional  energy to the Schwarz- 
schild mass o f  the system is 

1 - f ~  
M ~  2M( ln  l +s 2 ( 1 - ~  (34) 

I t  is easy to verify that  for 2 M G / R  << 1 one has 

EO ~ ,_z, ,., ~Ar ,,., r" - _  �89 (35) 
G ~ a m  G ~ l V l  G , . ~  a~, N - -  

In  the case o f  a regular star such as the sun, with R/2MG=2.32  x l0 s, one 
obtains f rom equat ions (32)-(34) the following relativistic values o f  the 
gravitat ional  energy o f  curvature  outside the star per unit  o f  mass:  

E~ - 1.077589- �9 �9 • 10 -6 

E G / M ' ~ -  1.077588 �9 �9 �9 • 10 -6 

M o / M ~ -  1.077587- �9 �9 • 10 -6 

which agree with the Newtonian  value 

EN/M,.~-1.077586.  �9 �9 • 10 -6 

up to the sixth digit. F o r  a black hole one has 

E ~  oo 

Hence, the proposed  tensorial expression for the gravitat ional  energy- 
m o m e n t u m  satisfies the requirements (12) and (13) when one assumes, 

- I ] . ~  

- t  

t 2 3 4 5 IV'~ I~ G 
i i i i i \ 

: , /  

E ~  - ~ o  

... . . . . . . . . . . . . .  E l i / I , t  

. . . .  M / I ~  

. . . . . . .  ECIM 

Fig. 1. Relativistic and Newtonian gravitational energies for unit stellar mass versus the ratio 
of stellar radius to Schwarzschild radius. 
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according to the demand (15), that the nonrotating coordinates can be 
specialized to be adapted to the static characteristic of spacetime. 

The values for a unit of stellar mass of the Newtonian and relativistic 
gravitational energies outside the star, EN/M, Me~M, Eo/M, and E~ 
are plotted in Figure 1 against the ratio of the radius of the star to its 
Schwarzschild radius, R/2MG. The plot includes only the first few Schwarz- 
schild radii showing the rapid convergence of the relativistic values to the 
Newtonian value. 

10. LOCAL VERSUS UNIVERSAL MEASUREMENT OF 
FREQUENCY AND ENERGY 

Frequency is usually defined as a quantity measured by comparison 
with a local standard clock. This clock may be represented by the frequency 
of a photon emitted by an atom at rest near the observer. This kind of 
frequency measurement by comparison with a nearby clock will be called in 
the following a "local measurement" and the resulting quantity a "local 
frequency." However, one can also carry out a frequency measurement by 
comparison with the frequency of a universal standard photon, such as the 
background radiation or a photon coming from a specific star or galaxy. 
This second method of frequency measurement will be called a "universal 
measurement" and the corresponding physical quantity a "universal 
frequency." 

The local and the universal frequencies are different physical quantities. 
The local frequency of a specific orbital transition is the same no matter 
where the emitting atom is placed, whereas the universal frequency reveals 
the gravitational redshift. (We omit here dealing with the Doppler shift 
because it can be eliminated by weighting measurements with photons com- 
ing from different directions.) 

The trouble with the local frequency arises when one compares two " 
local frequencies at different points in a gravitational field. One finds that 
of two clocks ticking at the same local rhythm, one is going faster than the 
other. On the other hand, if regulated to the same universal frequency, the 
two clocks compare satisfactorily. 

Similarly, one can define a "local" and a "universal" energy-momen- 
tum. In the first case the rest mass of a particle is measured by a comparison 
with the energy of a locally emitted photon, while in the second, it is meas- 
ured by comparison with the energy of a universal standard photon. Clearly, 
the local rest mass is an invariant of the movement, whereas the universal 
rest mass undergoes a gravitational redshift when the particle moves toward 
a massive body. 
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In the deduction of equation (5) use was made of the invariance of the 
stellar rest masses. This implies the use of the local definition of energy- 
momentum. But it still remains approximately correct with the universal 
definition of the energy-momentum if gravitational effects can be neglected, 
as is the case with isolated stars. All the other results of the preceding sections 
are independent of which of the definitions of energy is chosen. 

In the next section we will compare the energy of falling matter at 
different points along its path. It is equivalent to the comparison of frequen- 
cies at different points in a gravitational field. It is not surprising, therefore, 
that the local energy will be inadequate, whereas the universal energy will 
be satisfactory. As will be shown, when calculating the velocity of falling of 
test matter, by balancing gravitational and kinetic energy with the universal 
definition of energy, the correct result is attained, namely, a result closely 
approximated to the Newtonian value. It is left for the interested reader 
to verify that the same calculation with the local energy leads to absurd 
consequences. This seems to imply that the energy-momentum tensor 
appearing in the Einstein field equation has to be of universal nature. 

11. THE FALL OF TEST MATTER 

In the conventional general relativistic approach, a test body in a gravi- 
tational field moves along a geodesic line. This geodesic path results from 
the covariant divergencelessness of the matter energy-momentum tensor 
together with the invariance of the scalar rest mass (Einstein and Grommet, 
1927; Infeld and Schild, 1949). 

In our approach, however, the covariant-divergenceless quantity is not 
the matter, but the total energy-momentum tensor, which includes the gravi- 
tational contribution. At the same time, doubts arise about the invariance 
of the rest mass. As will be shown in the following, the rest mass of a body 
seems to be of the universal kind of energy, i.e., to undergo a gravitational 
redshift. The two premises that support the geodesic path have therefore 
been affected. But certainly the geodesic path is strongly corroborated by 
the experimental facts related to the motion of the planets as well as to the 
falling of bodies. We would therefore be in serious trouble if our approach 
leads to perceptibly different results. 

Whenever the interchange between matter and gravitational energy is 
negligible and the gravitational potential along the path almost constant, 
e.g., in the nearly circular motion of a planet, we are allowed to expect small 
differences between the path resulting from our approach and the geodesic 
path. But we are obligated to show that even in the case of a falling body 
its velocity, calculated by balancing matter and gravitational energy, satisfies 
the experimental data, i.e., approximates the geodesic path velocity. 



2082 Nissani and Leibowitz 

To this purpose, let us now add to the spherically symmetric gravita- 
tional field of the previous section a spherical layer of dust of infinitesimal 
thickness dr. If the dust is at rest at infinity, the three integral values of the 
dust energy, equations (25)-(27), coincide with its rest mass at infinity, which 
will be denoted by dm. For the dust at rest at a finite Schwarzschild coordi- 
nate r the integrals split into three different values. They also will take 
different values for the universal and the local definition of energy-momen- 
tum, respectively. Choosing the universal definition of energy-momentum, 
it is conserved energy, the time component of a contravariant energy- 
momentum vector expressed by equation (25), that retains the value of the 
rest mass at infinity. Hence, one has in static coordinates at every point for 
the at-rest dust 

dm ~ = dm = __f .v (-g) l/2T~ d3 x (36) 

where d V  is the infinitesimal volume occupied by the dust. In contrast, the 
scalar mass of the at-rest dust, equation (26), which, had we used the local 
definition of energy-momentum, would have been an invariant of the 
motion, undergoes a gravitational redshift 

@o dm~ co ~ = t "  (-g)'/2@~176176 d3x 

i 

(37) Jd V 

co = (1 - 2MG/r)  1/2 

Consider now the energy of the dust layer falling from infinity. The 
contribution of the dust to the conserved energy of the system is given by 

dm+ dP ~ = 1" (-g)l /2T~176 d3x (38) 
Jd V 

where dP ~ is the conserved kinetic energy of the dust. The contribution of 
the dust to the Schwarzschild mass parameter M, which determines the 
curvature as well as the gravitational energy in the outward region, is given 
by 

d M  = co 2 dln + dPo = t" ( -g) l /2T~ d3x (39) 
I 

~' d V  

and the scalar energy of the dust is 

d m + d P =  I (-g)l/2@~176176 d3x (40) 
ad V 

with 

d P = w  dP ~ = ~ - l  dPo (41) 
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According to the equivalence principle, the ratio of the scalar energy of 
the falling dust to its at-rest scalar mass is, by means of equations (37) 
and (40), 

1 + de/o9 dm = 1/(1 - 02 )  1/2 (42) 

where v is the dust velocity measured in the at-rest locally geodesic coordi- 
nates. Notice that since the left side of the above equation is a ratio of two 
energies it is independent of the way that the energy is measured. 

When the dust layer moves from oo to r the Schwarzschild mass M 
included in the sphere of radius r increments by dM, equation (39). Hence, 
the conserved gravitational energy E ~ contained in the spatial volume from 
r to oo, expressed by equation (32) with R replaced by r, undergoes a change 
given by 

dE~ = (aE~ M ) / a M )  d g  (43) 

According to the energy-momentum conservation law, valid in the 
assumed static nonrotating coordinates, this change in the gravitational 
energy should be opposite to the change in the conserved energy of the dust, 

a e  ~ = - a e  ~ ( 4 4 )  

From equations (41), (42), and (44) one obtains for the velocity of the 
falling dust measured in the at-rest locally geodesic coordinates 

v= [1 - (co 20E~ M)/~M)2] 1/2 (45) 

The first thing to be noticed is that the velocity v is, as should be expected, 
independent of the mass dm of the dust. By developing equation (45) in 
powers of r /2MG and disregarding second and higher powers, we obtain 

v ,~ 21/2MG/r = VE (46) 

which is the geodesic-path velocity VE (as well as the Newtonian velocity if 
r is identified as the Newtenian distance) of a test body falling from infinity. 

For a body falling from infinity to the surface of a regular star with 
r /2MG= 2.32 x 105 one obtains 

v = 0.0020761364... 

which agrees with the Einstenian value 

VE = 0.0020761369... 

up to the seventh digit. 
This result supports the proposed tensorial expression for the gravita- 

tional energy as well as the assumption that the nonrotating coordinates can 
be specialized to be adapted to the static nature of spacetime. In Figure 2 
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Fig. 2. The geodesic-path velocity VE and the velocity V derived by balancing kinetic and 
gravitational energies, of a test body falling from infinity. 

both velocities V and lie of  a body falling from infinity toward a black hole 
are plotted against R/2MG for the last five Schwarzschild radii. 

12. REMARKS AND CONCLUSIONS 

A special class of  coordinates, the nonrotating coordinates, is estab- 
lished by means of a variational principle imposed on the spacetime integrals 
of  the components of  the energy-momentum tensor. These preferred frames 
are therefore selected on account of their relation to the energy-momentum 
distribution in accordance with the Mach-Einstein assumption. Further- 
more, they share the experimental properties of Newton's and Einstein's 
(special relativity) inertial frames: 

1. They constitute the fixed-star frames wherein stars and galaxies are 
at rest or in constant-velocity motion. 

2. They include locally-geodesic coordinates with respect to any given 
observer, Hence, they serve as adequate "inertial" frames for the local experi- 
ments that do not involve gravitation. 

3. They also include non-locally-geodesic frames, making possible, at 
least in principle, the explanation of experimental facts that involve gravita- 
tion, e.g., the Newton water bucket and the Foucault pendulum experiments. 

4. As it does in the inertial frames, the energy-momentum tensor satis- 
fies in these coordinates a global conservation law. 

5. In static spacetime, and with an appropriate tensorial definition of 
gravitational energy-momentum, they are adaptable to the static nature of 
spacetime. 



Experimental Facts and Gravitational Energy in GR 2085 

6. The internal group of the geodesic nonrotating frames of a given 
observer is locally Lorentzian, in accordance with the central role that the 
Lorentz group plays in the physical phenomena that do not involve 
gravitation. 

A tensorial expression for the gravitational energy-momentum is pro- 
posed. It is shown to be compatible with the existence of nonrotating coordi- 
nates adapted to the static characteristic of spacetime in the surroundings 
of a spherical source. The space integral of the gravitational energy in the 
space around a regular star results in high agreement with the Newtonian 
value. In the case of a star of solar dimensions the difference between the 
two values, the Newtonian and the relativistic, is of the order of one part in 
one million. 

The study, by means of balancing gravitational against kinetic energy, 
of the falling of matter from infinity to the surface of a star gives results that 
accord with experience. The escape velocity from the sun calculated in this 
way matches the corresponding geodesic-path value to seven significant 
digits. 

As a significant by-product of the investigation of the dynamics of 
matter in a gravitational field, we are led to distinguish between two defini- 
tions of energy-momentum. We denote the ensuing physical quantities the 
"local" and the "universal" energy-momentum. The first one is measured 
by comparison with a locally emitted photon, while the second is measured 
by comparison with a universal photon, for example, the background radia- 
tion. The first hides the gravitational redshift of energy (and frequency), 
whereas the second reveals it. Only by using the universal definition of 
energy-momentum can one obtain the correct results in calculating the falling 
velocity. This suggests that the energy-momentum tensor in the Einstein field 
equation has to be of universal nature. 
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